Merge branch '12-changer-le-node-id' into 'master'

Resolve "Changer le node ID"

Closes #12

See merge request perdriau/dazibao!5
This commit is contained in:
PERDRIAU nelson 2020-04-01 17:18:03 +02:00
commit a832c2f64c
14 changed files with 819 additions and 54 deletions

0
Makefile Normal file
View File

View File

@ -7,3 +7,9 @@ s ⊕ n = (s + n) and 65535
s ≼ s lorsque ((s s) mod 2 16 ) < 32768
s ≼ s lorsque ((s s) and 32768) = 0
-------
jch.irif.fr port UDP 1212
http://jch.irif.fr:8082/

4
src/Notes.md Normal file
View File

@ -0,0 +1,4 @@
# Notes et recherches sur le projet
Telecharger la librarie OpenSSl avec 'sudo apt-get install libssl-dev'
Utiliser 'gcc -o {exec} {fichier.c} -lssl -lcrypto' pour utiliser la librarie OpenSSL

5
src/README.md Normal file
View File

@ -0,0 +1,5 @@
# dazibao
Le but de ce projet est dimplémenter un dazibao (« journal à grandes lettres »), semblable à
un « mur » de réseau social, mais de façon complètement distribuée. Le protocole est basé sur un
algorithme non-fiable dinondation.

60
src/hash.c Normal file
View File

@ -0,0 +1,60 @@
#include "hash.h"
// Hash a single data
void hash_data(pub_data *data, unsigned char *buf) {
// All three fields are concatenated into a single buffer
int totlen = data->length + 10;
unsigned char concat[totlen];
concat_data(data, concat);
// The resulting buf is hashed and put into a buffer
unsigned char hash[SHA256_DIGEST_LENGTH];
SHA256(concat, totlen, hash);
// Put truncated hash into buf
hash_trunc(hash, buf);
}
// Hash every data contained in data_list then return a network hash
void hash_network(list *data_list, unsigned char *buf) {
unsigned char *concat = (unsigned char*) malloc(0);
unsigned char hash[SHA256_DIGEST_LENGTH];
int totlen = 0;
list *tmp = data_list;
// Hash every known data and concatenate it to buffer concat
while(tmp != NULL) {
hash_data((pub_data*) tmp->data, hash);
concat_hash(concat, hash, totlen);
totlen += 16;
tmp = tmp->next;
}
// Hash all of concat to obtain the network hash
SHA256(concat, totlen, hash);
// Put truncated hash into buf
hash_trunc(hash, buf);
// Get rid of concat
free(concat);
}
// Truncate 32 octet hash to 16 octets
void hash_trunc(unsigned char *hash32oct, unsigned char *buf) {
// Copy the first 16 octets from hash32oct
memcpy(buf, hash32oct, 16);
}
// Concat all fields of data and put them in buf
void concat_data(pub_data *data, unsigned char *buf) {
memcpy(buf, &(data->id), 8);
memcpy(buf+8, &(data->seqno), 2);
memcpy(buf+10, data->data, data->length);
}
// Concat hash2 to hash1 (hash1 is modified)
void concat_hash(unsigned char *hash1, unsigned char *hash2, size_t size) {
hash1 = (unsigned char*) realloc(hash1, size + 16);
memcpy(hash1+size, hash2, 16);
}

23
src/hash.h Normal file
View File

@ -0,0 +1,23 @@
#ifndef HASH_H
#define HASH_H
#include <openssl/sha.h>
#include "node.h"
#include "tlv.h"
// Hash a single data
void hash_data(pub_data *data, unsigned char *buf);
// Hash every data contained in data_list then return a network hash
void hash_network(list *data_list, unsigned char *buf);
// Truncate 32 octet hash to 16 octets
void hash_trunc(unsigned char *hash256bit, unsigned char *buf);
// Concat all fields of data and put them in buf
void concat_data(pub_data *data, unsigned char *buf);
// Concat hash2 to hash1 (hash1 is modified)
void concat_hash(unsigned char *hash1, unsigned char *hash2, size_t size);
#endif

1
src/install.sh Executable file
View File

@ -0,0 +1 @@
sudo apt-get install libssl-dev

View File

@ -1,79 +1,312 @@
// This is the main file of the Dazibao project. It represents the node, and
// handles all of the main logic, including the network connexions.
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <time.h>
#include "tlv.h"
#include "node.h"
// Will return a packet when we receive one that's valid.
packet listen_for_packets(){
/* ---- Fonctions utilitaires ---- */
// Get list length
int len_list(list *l) {
int len = 0;
list *tmp = l;
while(tmp != NULL) {
tmp = tmp->next;
len++;
}
return len;
}
int validate_tlvs(union tlv tlv_to_validate){
// We need to make sure the TLV announces a length that will no go onto
// another tlv, as we might end up reading bullshit.
// Get a random neighbour
neighbour_peer *get_random_neighbour() {
// Get a random number
time_t t;
srand((unsigned) time(&t));
int n = rand() % len_list(neighbour_list);
// Get nth neighbour
list *tmp = neighbour_list;
for(int i=0; i<n; i++) {
tmp = tmp->next;
}
return (neighbour_peer*) tmp->data;
}
void work_with_tlvs(struct tlvs_list receivied_tlvs){
/* ---- Fin fonctions utilitaires ---- */
// For every TLV,
// We make sure the TLV is legal.
if(!validate_tlvs(tlv)){
perror(">> Invalid TLV receivied, is will be ignored.");
// We need to make sure the TLV announces a length that will no go onto
// another tlv, as we might end up reading bullshit.
int validate_tlv(char *data, int pos, short packet_len){
char type = data[pos];
// Nothing to do in this case
if(type == 0)
return 0;
// Check that we can read a length
if(pos + 1 >= packet_len)
return -1;
unsigned char tlv_len = data[pos+1];
// Check that the tlv does not exceed the packet length
if(pos + length >= packet_len)
return -1;
// Returns the type of the tlv or -1 if something went wrong
switch(type) {
case 1:
return 1;
case 2:
if(tlv_len != LEN_NEIGHBOUR_REQ) return -1;
return 2;
case 3:
if(tlv_len != LEN_NEIGHBOUR) return -1;
return 3;
case 4:
if(tlv_len != LEN_NETWORK_HASH) return -1;
return 4;
case 5:
if(tlv_len != LEN_NETWORK_STATE_REQ) return -1;
return 5;
case 6:
if(tlv_len != LEN_NODE_HASH) return -1;
return 6;
case 7:
if(tlv_len != LEN_NODE_STATE_REQ) return -1;
return 7;
case 8:
if(tlv_len < MIN_LEN_NODE_STATE || tlv_len > MAX_LEN_NODE_STATE) return -1;
return 8;
case 9:
return 9;
default:
return -1;
}
}
// For every packet recivied,
// then we make sure it's conform
// We then extract the data from it to make it easy to work with
int check_header(char * req[], int buffer_size, struct packet * packet_to_return){
packet * packet_to_return = (packet*) req;
// We need to check a few things ;
// The first byte must be worth 95,
if (packet_to_return->magic != 95) {
perror(">> The magic number of the packet is no good.");
return -1;
}
// The second byte must be worth 1,
if (packet_to_return->version != 1) {
perror(">> The version number of the packet is no good.");
return -1;
}
if (packet_to_return.length + 4 > buffer_size ) {
perror(">> The packet length is bigger than the UDP datagram, which is not possible with the current laws of physics.");
return -1;
}
return 0;
}
// If the sender is not in the neighbourhood, and we have 15 neighbours, we
// ignore the packet. Otherwise, we add him to the neighbourhood, marked as
// temporary.
int update_neighbours(){
return 0;
};
// We then look at the differents TLVs in the packet.
void work_with_tlvs(char *data, short packet_len, struct sockaddr_in6 sender){
int pos = 0;
unsigned char tlv_len;
tlv tmp_tlv;
while(pos < packet_len) {
switch(validate_tlv(data, pos, packet_len)) {
case 0:
// We received a padding tlv so it is ignored
pos += 1;
break;
case 1:
// We received a padding tlv so it is ignored
tlv_len = data[pos+1];
pos += tlv_len + 2;
break;
case 2:
// We received a neighbour request so a random neighbor tlv has to be sent
tlv_len = data[pos+1];
pos += tlv_len + 2;
// Send a neighbour tlv
neighbour_peer *random = get_random_neighbour();
build_neighbour(&tmp_tlv, random->ip, random->port);
// NOT FINISHED - What packet is it added to?
add_tlv(packet, &tmp_tlv, 3);
break;
case 3:
// We received a neighbour tlv so a tlv network hash is sent to that address
neighbour* cur_tlv = ((neighbour*) data) + pos;
struct in6_addr ip = cur_tlv->ip;
short port = cur_tlv->port;
tlv_len = data[pos+1];
pos += tlv_len + 2;
// Build network hash
unsigned char hash[16];
hash_network(neighbour_list, hash);
build_network_hash(&tmp_tlv, hash);
// NOT FINISHED - What packet is it added to?
add_tlv(packet, &tmp_tlv, 4);
break;
case 4:
// We reveived a network hash tlv so
tlv_len = data[pos+1];
pos += tlv_len +2;
// NOT FINISHED - Where is network_hash?
build_neighbour(&tmp_tlv, network_hash);
// NOT FINISHED - What packet is it added to?
add_tlv(packet, &tmp_tlv, 4);
break;
case 5:
// We received a network state request tlv so a series of tlv node hash have to be sent for each data known
pos += 2;
// NOT FINISHED - for each known data
list *tmp_list = data_list;
pub_data *tmp_data;
while(tmp_list != NULL) {
tmp_data = (pub_data*) tmp_list->data;
build_node_hash(&tmp_tlv, tmp_data->id, tmp_data->seqno);
}
break;
case 6:
// We received a node hash tlv
break;
case 7:
// We received a node state request tlv
break;
case 8:
// We received a node state tlv
break;
case 9:
// We received a warning tlv so it's message is printed
break;
default:
return ;
}
}
}
// We listen forever for new paquets;
void listen_for_packets(){
// Create new socket for UDP
int s = socket(AF_INET6, SOCK_DGRAM, 0);
if(s < 0) {
perror(">> Error, cannot create socket.");
perror(">> Exiting...");
exit(1);
}
struct sockaddr_in6 server;
memset(&server, 0, sizeof(server));
server.sin6_family = AF_INET6;
server.sin6_port = htons(LISTEN_PORT);
int rc = bind(s, (struct sockaddr*)&server, sizeof(server));
if(rc < 0) {
perror(">> Error, cannot bind socket to choosen port.");
perror(">> Exiting...");
exit(1);
}
// A paquet has at most a length of 1024 bytes
char req[1024];
struct sockaddr_in6 sender;
struct iovec io = { .iov_len = 1024, .iov_base = req };
struct msghdr msg_to_receive = {
.msg_name = &sender,
.msg_namelen = sizeof(sender),
.msg_iov = &io,
.msg_iovlen = 1
};
while(1){
memset(req, '\0', 1024);
rc = recvmsg(s, &msg_to_receive, 0);
if(rc < 0) {
perror(">> Error while receiving a new datagram.");
perror(">> Ignoring, continuing...");
continue;
}
// Switch
printf(">> New paquet received :\n");
printf("%s\n", req);
// TLV Network Hash
// We calculate a network hash,
// TODO : Here, we need to fork.
// We compare both,
// We verify the received packet is well formated,
// and we return it in the struct designed to work with it.
struct packet * formated_rec_datagram;
if(check_header(&req, 1024, formated_rec_datagram) < 0){
perror(">> Error while checking the header, aborting this packet, by choice, and conviction.");
continue;
}
// If they differ, we send a TLV Network State Request
// back to the sender.
// TODO : Add the neighbour check here.
// TLV Network State Request
// We check our neighbourhood, and for each peer, we send back
// to the sender a TLV Node Hash
// TLV Node hash
// We get a hash _h_ for the node _l_
// If we don't have an entry for _l_, or if we have the same one as the
// on we just receivied, we send out a TLV Node State Request back.
// TLV Node State
// We get a hash _h_, sequence number _s_, data _d_ for node _l_.
// We compute a network hash,
// We compare the hash, if they differ, then with l',s',d' our data and
// h' the corresponding hash,
// if _l_ is our own node id, then
// if s >> s' then we update our sequence number to s ⊕ 1 mod 2^16
// If it's another's node id, then
// If there is no entry for the sender,
// we store the entry in our data table.
// struct tlv_list received_tlvs;
// if (validate_tlvs(formated_rec_datagram) < 0)
int nbr_success_tlv = work_with_tlvs(formated_rec_datagram, &req, sender);
if (nbr_success_tlv < 0){
perror(">> Error while treating the TLVs of the packet.");
printf(">> Managed to deal with %i TLVs\n", -nbr_success_tlv );
} else {
printf(">> Done working with the TLVs of the packet, listenin for new packets.\n");
}
}
}
int main(int argc, char const *argv[]) {
int main(int argc, const char *argv[]) {
int cont = 1;
while(CONTINUE){
while(cont){
// We create the neighbourhood table
neighbour_peer neighbour_list[NEIGHBOUR_MAX];
// We create the message table
// We create our own message.
// Listen for incoming packets
listen_for_packets();
// For every packet recivied, we fork,
// then we make sure it's conform
// We then extract the data from it to make it easy to work with
check_header();
// If the sender is not in the neighbourhood, and we have 15 neighbours, we
// ignore the packet. Otherwise, we add him to the neighbourhood, marked as
// temporary.
update_neighbours();
// We then look at the differents TLVs in the packet.
work_with_tlvs();
// This is in it's own fork.
time_t delay = time(NULL) + 20;
while(! (delay < time(NULL)){
while(! (delay < time(NULL))) {
// Theses functions are there for general book-keeping,and run in there own
// thread, being run every 20 seconds.
// Every 20 sec, if we have less than 5 neighbours, we ask for more peers

View File

@ -1,16 +1,81 @@
// Define constants
#ifndef NODE_H
#define NODE_H
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include "tlv.h"
#include "hash.h"
// On which port do we listen to
#define LISTEN_PORT 1212
// The node ID
#define NODE_ID 42675882021843277
// The number of neighbours
// The neighbour table has 15 entries
#define NEIGHBOUR_MAX 15
/* la table de voisins, qui est indexée par adresses de socket (des paires (IP, Port)),
* et dont chaque entrée contient un booléen indiquant si le pair est permanent
* (configuré au lancement) ou transitoire, et la date de dernière réception dun
* paquet de la part de ce pair ;
*/
typedef struct neighbour_peer {
struct in6_addr ip;
short port;
char is_temporary;
struct timeval last_seen;
} neighbour_peer;
// The strucuture to hold the messages
/* It's a list of triplets, (Li,Si,Di)
* Li : The Node ID of the publisher 64 bits
* Si : the sequence number 16 bits
* Di : the data of the message 192 bytes
*/
typedef struct pub_data {
unsigned char length;
long id;
short seqno;
char *data;
} pub_data;
// General list
typedef struct list {
void *data;
void *next;
} list;
// Static variables
static list *data_list;
static list *neighbour_list;
// TODO
// fonctions signatures
void listen_for_packets();
void check_header();
int check_header(char * received_datagram[], int len, struct packet pack);
void update_neighbours();
int validate_tlvs(struct packet * pack, struct tlv_list * tlv_l);
void work_with_tlvs();
int update_neighbours();
int validate_tlvs();
int work_with_tlvs(struct packet received_packet, char * data_from_packet[], struct sockaddr_in6 sender);
void add_tlv(packet *packet, tlv *tlv, char type);
int send_packet(struct tlv_list tlvs_to_send, );
// threaded functions
@ -21,6 +86,8 @@ void t_update_neighbours();
void t_get_network_state();
// Helper functions
char * hash();
int len_list(list *l);
short * get_seq_no(short s, int n);
neighbour_peer *get_random_neighbour();
#endif

32
src/parser.c Normal file
View File

@ -0,0 +1,32 @@
#include "parser.h"
// retourne le type de commande à exécuter
cmd_token parse_cmd() {
char buf[198], cmd[5], arg[193];
cmd_token token;
token.type = ERROR;
memset(token.arg, 0, 193);
if(fgets(buf, 198, stdin) == NULL)
return token;
// cmd sera le premier mot rencontré et arg la suite de mots après celui ci,
// si les deux variables ne sont pas remplies alors il y a une erreur
if(sscanf(buf, "%s %[^\t\n]", cmd, arg) != 2)
return token;
if(strcmp("req", cmd) == 0) {
if(strcmp("neighbour", arg) == 0)
token.type = NEIGHBOUR_REQ;
else if(strcmp("network state", arg) == 0)
token.type = NETWORK_STATE_REQ;
else if(strcmp("node state", arg) == 0)
token.type = NODE_STATE_REQ;
} else if(strcmp("post", cmd) == 0) {
token.type = POST;
//arg[192] = 0;
strcpy(token.arg, arg);
}
return token;
}

19
src/parser.h Normal file
View File

@ -0,0 +1,19 @@
#include <stdio.h>
#include <string.h>
#ifndef PARSER_H
#define PARSER_H
typedef enum cmd_type {
NEIGHBOUR_REQ, NETWORK_STATE_REQ, NODE_STATE_REQ, POST, ERROR
} cmd_type;
typedef struct cmd_token {
cmd_type type;
char arg[193];
} cmd_token;
// retourne le type de commande à exécuter
cmd_token parse_cmd();
#endif

188
src/tlv.c Normal file
View File

@ -0,0 +1,188 @@
#include "tlv.h"
// creer un tlv
int build_tlv(tlv *tlv, cmd_token token) {
switch(token.type) {
case NEIGHBOUR_REQ:
// a remplir
break;
case NETWORK_STATE_REQ:
// a remplir
break;
case NODE_STATE_REQ:
// a remplir
break;
case POST:
// a remplir
break;
case ERROR:
printf("Wrong format, use 'req {neighbour | network state | node state}' or 'post {message}'");
break;
}
}
int build_pad1(tlv *tlv) {
pad1 *new = (pad1*) malloc(sizeof(pad1));
if(new == NULL)
return -1;
new->type = 0;
tlv->pad1 = new;
return 0;
}
int build_padn(tlv *tlv, size_t len) {
padn *new = (padn*) malloc(sizeof(padn));
if(new == NULL)
return -1;
new->type = 1;
new->length = len;
new->mbz = (char*) calloc(sizeof(char), len);
tlv->padn = new;
return 0;
}
int build_neighbour_req(tlv *tlv) {
neighbour_req *new = (neighbour_req*) malloc(sizeof(neighbour_req));
if(new == NULL)
return -1;
new->type = 2;
new->length = 0;
tlv->neighbour_req = new;
return 0;
}
int build_neighbour(tlv *tlv, struct in6_addr ip, short port) {
neighbour *new = (neighbour*) malloc(sizeof(neighbour));
if(new == NULL)
return -1;
new->type = 3;
new->length = 18;
new->ip = ip;
new->port = port;
tlv->neighbour = new;
return 0;
}
int build_network_hash(tlv *tlv, char *hash) {
network_hash *new = (network_hash*) malloc(sizeof(network_hash));
if(new == NULL)
return -1;
new->type = 4;
new->length = 16;
memcpy(new->network_hash, hash, 16);
tlv->network_hash = new;
return 0;
}
int build_network_state_req(tlv *tlv) {
network_state_req *new = (network_state_req*) malloc(sizeof(network_state_req));
if(new == NULL)
return -1;
new->type = 5;
new->length = 0;
tlv->network_state_req = new;
return 0;
}
int build_node_hash(tlv *tlv, long node_id, short seqno, char *hash) {
node_hash *new = (node_hash*) malloc(sizeof(node_hash));
if(new == NULL)
return -1;
new->type = 6;
new->length = 26;
new->node_id = node_id;
new->seqno = seqno;
memcpy(new->node_hash, hash, 16);
tlv->node_hash = new;
return 0;
}
int build_node_state_req(tlv *tlv, long node_id) {
node_state_req *new = (node_state_req*) malloc(sizeof(node_state_req));
if(new == NULL)
return -1;
new->type = 7;
new->length = 8;
new->node_id = node_id;
tlv->node_state_req = new;
return 0;
}
int build_node_state(tlv *tlv, long node_id, short seqno, char *node_hash, char *data) {
node_state *new = (node_state*) malloc(sizeof(node_state));
int len = strlen(data);
if(new == NULL)
return -1;
// en mettant cet octet à 0 on est surs de traiter un champ data de taille 192 max
if(len > 192) {
data[192] = 0;
len = 192;
}
new->type = 8;
new->length = 26 + len;
new->node_id = node_id;
new->seqno = seqno;
memcpy(new->node_hash, node_hash, 16);
memcpy(new->data, data, len);
tlv->node_state = new;
return 0;
}
int build_warning(tlv *tlv, char *message) {
warning *new = (warning*) malloc(sizeof(warning));
int len = strlen(message);
if(new == NULL)
return -1;
// en mettant cet octet à 0 on est surs de traiter un champ message de taille 256 max
if(len > 256) {
message[256] = 0;
len = 256;
}
new->type = 9;
new->length = len;
memcpy(new->message, message, len);
tlv->warning = new;
return 0;
}

127
src/tlv.h Normal file
View File

@ -0,0 +1,127 @@
#ifndef TLV_H
#define TLV_H
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdlib.h>
#include "parser.h"
#include "hash.h"
#define LEN_NEIGHBOUR_REQ 0
#define LEN_NEIGHBOUR 18
#define LEN_NETWORK_HASH 16
#define LEN_NETWORK_STATE_REQ 0
#define LEN_NODE_HASH 26
#define LEN_NODE_STATE_REQ 8
#define MIN_LEN_NODE_STATE 26
#define MAX_LEN_NODE_STATE 218
// 8 octets min (struct pointer 4 octets), 1024 octets max
typedef struct packet {
unsigned char magic; // 95 (si autre, ignorer)
unsigned char version; // 1 (si autre, ignorer)
short length; // 1020 max
char *body;
} packet;
// 1 octet
typedef struct pad1 {
unsigned char type;
} pad1;
// 2 octets min, 258 octets max (unsigned char 0 -> 255)
typedef struct padn {
unsigned char type;
unsigned char length;
char mbz[256];
} padn;
// 2 octets
typedef struct neighbour_req {
unsigned char type;
unsigned char length;
} neighbour_req;
// 20 octets
typedef struct neighbour {
unsigned char type;
unsigned char length;
struct in6_addr ip;
short port;
} neighbour;
// 18 octets
typedef struct network_hash {
unsigned char type;
unsigned char length;
char network_hash[16];
} network_hash;
// 2 octets
typedef struct network_state_req {
unsigned char type;
unsigned char length;
} network_state_req;
// 28 octets
typedef struct node_hash {
unsigned char type;
unsigned char length;
long node_id;
short seqno;
char node_hash[16];
} node_hash;
// 10 octets
typedef struct node_state_req {
unsigned char type;
unsigned char length;
long node_id;
} node_state_req;
// 28 octets min, 220 octets max (data 0 -> 192)
typedef struct node_state {
unsigned char type;
unsigned char length;
long node_id;
short seqno;
char node_hash[16];
char data[192];
} node_state;
// 2 octets min, 258 ocets max (unsigned char 0 -> 255)
typedef struct warning {
unsigned char type;
unsigned char length;
char message[256];
} warning;
typedef union tlv {
pad1 *pad1;
padn *padn;
neighbour_req *neighbour_req;
neighbour *neighbour;
network_hash *network_hash;
network_state_req *network_state_req;
node_hash *node_hash;
node_state_req *node_state_req;
node_state *node_state;
warning *warning;
} tlv;
// build tlv from token
int build_tlv(tlv *tlv, cmd_token token);
// build specific tlv
int build_pad1(tlv *tlv);
int build_padn(tlv *tlv, size_t len);
int build_neighbour_req(tlv *tlv);
int build_neighbour(tlv *tlv, struct in6_addr ip, short port);
int build_network_hash(tlv *tlv, char *network_hash);
int build_network_state_req(tlv *tlv);
int build_node_hash(tlv *tlv, long node_id, short seqno, char *node_hash);
int build_node_state_req(tlv *tlv, long node_id);
int build_node_state(tlv *tlv, long node_id, short seqno, char *node_hash, char *data);
int build_warning(tlv *tlv, char *message);
#endif

BIN
src/énoncé.pdf Normal file

Binary file not shown.