Résolution du merge

Changement de place des fonctions
Ajout d'une section pour les fonctions utilitaires
This commit is contained in:
n07070 2020-04-01 17:12:24 +02:00
parent 4c2ebba255
commit 728283acdd

View File

@ -11,226 +11,39 @@
#include "tlv.h" #include "tlv.h"
#include "node.h" #include "node.h"
// We then look at the differents TLVs in the packet. /* ---- Fonctions utilitaires ---- */
int work_with_tlvs(struct packet received_packet, char * data_from_packet[], struct sockaddr_in6 sender){
// For every TLV, // Get list length
// We make sure the TLV is legal. int len_list(list *l) {
int number_of_good_tlvs = 0; int len = 0;
int padding_to_next_tlv = 0; list *tmp = l;
int end_analysis = 0;
while (!end_analysis) {
// Switch while(tmp != NULL) {
switch (data_from_packet[4 + padding_to_next_tlv]) { tmp = tmp->next;
case 0: len++;
// Padding tlv, we can ignore, pass to next tlv.
padding_to_next_tlv++;
number_of_good_tlvs++;
break;
case 1:
// PadN TLV, we can ignore, pass to next tlv.
// Add the length to get to next TLV
padding_to_next_tlv += data_from_packet[4 + padding_to_next_tlv + 1];
number_of_good_tlvs++;
break;
case 2:
// Neighbour Request TLV
padding_to_next_tlv += 2;
number_of_good_tlvs++;
break;
case 3:
// Neighbour TLV
padding_to_next_tlv += data_from_packet[4 + padding_to_next_tlv + 1];
number_of_good_tlvs++;
break;
case 4:
// Network hash TLV
padding_to_next_tlv += data_from_packet[4 + padding_to_next_tlv + 1];
number_of_good_tlvs++;
// TLV Network Hash
// We calculate a network hash,
// We compare both,
// If they differ, we send a TLV Network State Request
// back to the sender.$
break;
case 5:
// Network State Request
padding_to_next_tlv += 2;
number_of_good_tlvs++;
// TLV Network State Request
// We check our neighbourhood, and for each peer, we send back
// to the sender a TLV Node Hash
break;
case 6:
// Node Hash
padding_to_next_tlv += data_from_packet[4 + padding_to_next_tlv + 1];
number_of_good_tlvs++;
// TLV Node hash
// We get a hash _h_ for the node _l_
// If we don't have an entry for _l_, or if we have the same one as the
// on we just receivied, we send out a TLV Node State Request back.
break;
case 7:
// Node State Request
padding_to_next_tlv += data_from_packet[4 + padding_to_next_tlv + 1];
number_of_good_tlvs++;
break;
case 8:
// Node State
padding_to_next_tlv += data_from_packet[4 + padding_to_next_tlv + 1];
number_of_good_tlvs++;
// TLV Node State
// We get a hash _h_, sequence number _s_, data _d_ for node _l_.
// We compute a network hash,
// We compare the hash, if they differ, then with l',s',d' our data and
// h' the corresponding hash,
// if _l_ is our own node id, then
// if s >> s' then we update our sequence number to s ⊕ 1 mod 2^16
// If it's another's node id, then
// If there is no entry for the sender,
// we store the entry in our data table.
break;
case 9:
// Warning
padding_to_next_tlv += data_from_packet[4 + padding_to_next_tlv + 1];
number_of_good_tlvs++;
break;
default:
return -number_of_good_tlvs;
// We have a faulty TLV, thus we ignore and return.
}
// If we arrived at the end of the packet
// or if the length is not possible
if (received_packet.length <= padding_to_next_tlv + 4) {
end_analysis = 1;
}
}
return 0;
} }
// We need to make sure the TLV announces a length that will no go onto return len;
// another tlv, as we might end up reading bullshit.
int validate_tlvs(struct packet packet_to_validate){
} }
// For every packet recivied, // Get a random neighbour
// then we make sure it's conform neighbour_peer *get_random_neighbour() {
// We then extract the data from it to make it easy to work with // Get a random number
int check_header(char * req[], int buffer_size, struct packet * packet_to_return){ time_t t;
srand((unsigned) time(&t));
int n = rand() % len_list(neighbour_list);
packet * packet_to_return = (packet*) req; // Get nth neighbour
list *tmp = neighbour_list;
// We need to check a few things ; for(int i=0; i<n; i++) {
// The first byte must be worth 95, tmp = tmp->next;
if (packet_to_return->magic != 95) {
perror(">> The magic number of the packet is no good.");
return -1;
} }
// The second byte must be worth 1, return (neighbour_peer*) tmp->data;
if (packet_to_return->version != 1) {
perror(">> The version number of the packet is no good.");
return -1;
} }
if (packet_to_return.length + 4 > buffer_size ) { /* ---- Fin fonctions utilitaires ---- */
perror(">> The packet length is bigger than the UDP datagram, which is not possible with the current laws of physics.");
return -1;
}
return 0;
}
// If the sender is not in the neighbourhood, and we have 15 neighbours, we
// ignore the packet. Otherwise, we add him to the neighbourhood, marked as
// temporary.
int update_neighbours(){
return 0;
};
// We listen forever for new paquets;
void listen_for_packets(){
// Create new socket for UDP
int s = socket(AF_INET6, SOCK_DGRAM, 0);
if(s < 0) {
perror(">> Error, cannot create socket.");
perror(">> Exiting...");
exit(1);
}
struct sockaddr_in6 server;
memset(&server, 0, sizeof(server));
server.sin6_family = AF_INET6;
server.sin6_port = htons(LISTEN_PORT);
int rc = bind(s, (struct sockaddr*)&server, sizeof(server));
if(rc < 0) {
perror(">> Error, cannot bind socket to choosen port.");
perror(">> Exiting...");
exit(1);
}
// A paquet has at most a length of 1024 bytes
char req[1024];
struct sockaddr_in6 sender;
struct iovec io = { .iov_len = 1024, .iov_base = req };
struct msghdr msg_to_receive = {
.msg_name = &sender,
.msg_namelen = sizeof(sender),
.msg_iov = &io,
.msg_iovlen = 1
};
while(1){
memset(req, '\0', 1024);
rc = recvmsg(s, &msg_to_receive, 0);
if(rc < 0) {
perror(">> Error while receiving a new datagram.");
perror(">> Ignoring, continuing...");
continue;
}
printf(">> New paquet received :\n");
printf("%s\n", req);
// TODO : Here, we need to fork.
// We verify the received packet is well formated,
// and we return it in the struct designed to work with it.
struct packet * formated_rec_datagram;
if(check_header(&req, 1024, formated_rec_datagram) < 0){
perror(">> Error while checking the header, aborting this packet, by choice, and conviction.");
continue;
}
// TODO : Add the neighbour check here.
// struct tlv_list received_tlvs;
// if (validate_tlvs(formated_rec_datagram) < 0)
<<<<<<< HEAD
int nbr_success_tlv = work_with_tlvs(formated_rec_datagram, &req, sender);
if (nbr_success_tlv < 0){
perror(">> Error while treating the TLVs of the packet.");
printf(">> Managed to deal with %i TLVs\n", -nbr_success_tlv );
} else {
printf(">> Done working with the TLVs of the packet, listenin for new packets.\n");
=======
// If the sender is not in the neighbourhood, and we have 15 neighbours, we
// ignore the packet. Otherwise, we add him to the neighbourhood, marked as
// temporary.
int update_neighbours(){
};
// We need to make sure the TLV announces a length that will no go onto // We need to make sure the TLV announces a length that will no go onto
// another tlv, as we might end up reading bullshit. // another tlv, as we might end up reading bullshit.
@ -283,8 +96,43 @@ int validate_tlv(char *data, int pos, short packet_len){
} }
} }
// For every packet recivied,
// then we make sure it's conform
// We then extract the data from it to make it easy to work with
int check_header(char * req[], int buffer_size, struct packet * packet_to_return){
packet * packet_to_return = (packet*) req;
// We need to check a few things ;
// The first byte must be worth 95,
if (packet_to_return->magic != 95) {
perror(">> The magic number of the packet is no good.");
return -1;
}
// The second byte must be worth 1,
if (packet_to_return->version != 1) {
perror(">> The version number of the packet is no good.");
return -1;
}
if (packet_to_return.length + 4 > buffer_size ) {
perror(">> The packet length is bigger than the UDP datagram, which is not possible with the current laws of physics.");
return -1;
}
return 0;
}
// If the sender is not in the neighbourhood, and we have 15 neighbours, we
// ignore the packet. Otherwise, we add him to the neighbourhood, marked as
// temporary.
int update_neighbours(){
return 0;
};
// We then look at the differents TLVs in the packet. // We then look at the differents TLVs in the packet.
void work_with_tlvs(char *data, short packet_len){ void work_with_tlvs(char *data, short packet_len, struct sockaddr_in6 sender){
int pos = 0; int pos = 0;
unsigned char tlv_len; unsigned char tlv_len;
tlv tmp_tlv; tlv tmp_tlv;
@ -371,47 +219,75 @@ void work_with_tlvs(char *data, short packet_len){
} }
} }
// We listen forever for new paquets;
void listen_for_packets(){
// Create new socket for UDP
int s = socket(AF_INET6, SOCK_DGRAM, 0);
void work_with_tlvs(struct tlvs_list receivied_tlvs){ if(s < 0) {
perror(">> Error, cannot create socket.");
// For every TLV, perror(">> Exiting...");
// We make sure the TLV is legal. exit(1);
if(!validate_tlvs(tlv)){
perror(">> Invalid TLV receivied, it will be ignored.");
>>>>>>> dev-felipe
}
}
} }
// Get list length struct sockaddr_in6 server;
int len_list(list *l) { memset(&server, 0, sizeof(server));
int len = 0;
list *tmp = l;
while(tmp != NULL) { server.sin6_family = AF_INET6;
tmp = tmp->next; server.sin6_port = htons(LISTEN_PORT);
len++; int rc = bind(s, (struct sockaddr*)&server, sizeof(server));
if(rc < 0) {
perror(">> Error, cannot bind socket to choosen port.");
perror(">> Exiting...");
exit(1);
} }
return len; // A paquet has at most a length of 1024 bytes
char req[1024];
struct sockaddr_in6 sender;
struct iovec io = { .iov_len = 1024, .iov_base = req };
struct msghdr msg_to_receive = {
.msg_name = &sender,
.msg_namelen = sizeof(sender),
.msg_iov = &io,
.msg_iovlen = 1
};
while(1){
memset(req, '\0', 1024);
rc = recvmsg(s, &msg_to_receive, 0);
if(rc < 0) {
perror(">> Error while receiving a new datagram.");
perror(">> Ignoring, continuing...");
continue;
} }
// Get a random neighbour printf(">> New paquet received :\n");
neighbour_peer *get_random_neighbour() { printf("%s\n", req);
// Get a random number
time_t t;
srand((unsigned) time(&t));
int n = rand() % len_list(neighbour_list);
// Get nth neighbour // TODO : Here, we need to fork.
list *tmp = neighbour_list;
for(int i=0; i<n; i++) { // We verify the received packet is well formated,
tmp = tmp->next; // and we return it in the struct designed to work with it.
struct packet * formated_rec_datagram;
if(check_header(&req, 1024, formated_rec_datagram) < 0){
perror(">> Error while checking the header, aborting this packet, by choice, and conviction.");
continue;
} }
return (neighbour_peer*) tmp->data; // TODO : Add the neighbour check here.
// struct tlv_list received_tlvs;
// if (validate_tlvs(formated_rec_datagram) < 0)
int nbr_success_tlv = work_with_tlvs(formated_rec_datagram, &req, sender);
if (nbr_success_tlv < 0){
perror(">> Error while treating the TLVs of the packet.");
printf(">> Managed to deal with %i TLVs\n", -nbr_success_tlv );
} else {
printf(">> Done working with the TLVs of the packet, listenin for new packets.\n");
}
}
} }
int main(int argc, const char *argv[]) { int main(int argc, const char *argv[]) {